题目链接:http://acm.pku.edu.cn/JudgeOnline/problem?id=3757
题目大意
第一行输入n,k,f表示从n个服务器里选k个,传输大小为f(以Mb为单位)的文件
接下来输入每个服务器的吞吐量,带宽和资源消耗(pi,bi,ci)
传输数据的总时间=传输的大小(fi)/pi+fi/bi
传输每Mb消耗的资源为ci
要求每台服务器完成传输的时间相同
求最小的资源消耗和Sum(sci)【sci=fi*ci】
输出是一行:Min{Sum(sci)}
输入数据
n,k为整数
f,pi,bi,ci为实数
计算公式:
$$ sci = fi \times ci $$(1)
$$ time = \frac{fi}{pi} + \frac{fi}{bi} $$(2)
$$ \sum_{i=1}^{k} fi = f $$(3)
$$ fi = \frac{time \times pi \times bi}{pi + bi} $$ {4}
$$ time \times (\sum_{i=1}^{k} \frac{pi \times bi}{pi + bi}) = f $$(5)
令 $$ sPar1 = \sum_{i=1}^{k} \frac{pi \times bi}{pi + bi} $$
=> $$ sci = \frac{f}{sPar1} \times pi \times bi \times \frac{ci}{pi + bi} $$(6)
令 $$ sPar2 = \sum_{i=1}^{k} \frac{pi \times bi \times ci}{pi + bi} $$
=> $$ Sum(sci) = \frac{f \times sPar2}{sPar1} $$(7)
以上是我做题时的思路尽头,后来看了某个大牛的代码,再看了点关于0-1分数规划的资料有了下一步整理
关于0-1分数规划:
令 $$ xi = \frac{pi \times bi}{pi + bi} $$
现在我们知道
$$ res = f \times \frac{\sum_{i=1}^{k} xici}{\sum_{i=1}^{k} xi} $$
令 $$ z = \min (f \times (\sum_{i=1}^{k} xici) - res \times (\sum_{i=1}^{k} xi) ) $$
即 $$ z(l) = \min ( f \times (\sum_{i=1}^{k} xici) - l \times (\sum_{i=1}^{k} xi) ) $$
由于z(l)单调递减,设问题最优解为l*
z(l) > 0 when l < l* z(l) = 0 when l = l* z(l) < 0 when l > l*
然后只要二分算出l使得z(l) = 0即可。其中min的部分可以排序解决
代码:
/**
* URL:http://acm.pku.edu.cn/JudgeOnline/problem?id=3757
* Author: OWenT
* 0-1分数规划,特殊排序,二分
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define MAXN 20005
typedef struct
{
double p,b,c;
double pb,pbc;
}bank;
bank bk[MAXN];
double br,bl,bm;// for binary search
double f;// file size
bool cmp(bank a, bank b)
{
return f * a.pbc - bm * a.pb < f * b.pbc - bm * b.pb;
}
double getZFun(const long &k);
int main()
{
long k,n,i;
double res;
scanf("%ld %ld", &n, &k);
scanf("%lf", &f);
for(i = 1; i <= n; i ++)
{
scanf("%lf %lf %lf", &bk[i].p, &bk[i].b, &bk[i].c);
bk[i].pb = bk[i].b * bk[i].p / (bk[i].b + bk[i].p);
bk[i].pbc = bk[i].pb * bk[i].c;
}
//binary search
br = 1e10 + 1;
bl = 0;
while(br - bl > 1e-6)
{
bm = (br + bl) / 2;
sort(bk + 1, bk + n + 1, cmp);
double tmp = getZFun(k);
if(tmp > 0)
bl = bm + 1e-6;
else
br = bm - 1e-6;
}
res = bl;
printf("%.4lf\n", res);
return 0;
}
double getZFun(const long &k)
{
long i;
double sum = 0;
for(i = 1; i <= k; i ++)
sum += f * bk[i].pbc - bm * bk[i].pb;
return sum;
}
使用更快的迭代法:
(该迭代的过程中出现了一个白痴级别的小问题,搞得我WA了无数次,不爽)
/**
* URL:http://acm.pku.edu.cn/JudgeOnline/problem?id=3757
* Author: OWenT
* 0-1分数规划,特殊排序,二分
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define MAXN 20005
typedef struct
{
double p,b,c;
double pb,pbc;
double sortPar;
}bank;
bank bk[MAXN];
bool cmp(bank a, bank b)
{
return a.sortPar - b.sortPar < 1e-8;
}
int main()
{
long k,n,i;
double f, res, tmpRes;
scanf("%ld %ld", &n, &k);
scanf("%lf", &f);
for(i = 1; i <= n; i ++)
{
scanf("%lf %lf %lf", &bk[i].p, &bk[i].b, &bk[i].c);
bk[i].pb = bk[i].b * bk[i].p / (bk[i].b + bk[i].p);
bk[i].pbc = bk[i].pb * bk[i].c;
}
//更快的迭代
res = 0;
tmpRes = 1e10;
while(fabs(res - tmpRes) > 1e-6)
{
for(i = 1; i <= n; i ++)
bk[i].sortPar = f * bk[i].pbc - res * bk[i].pb;
tmpRes = res;
sort(bk + 1, bk + n + 1, cmp);
double tmpA = 0, tmpB = 0;
for(i = 1; i <= k; i ++)
{
tmpA += f * bk[i].pbc;
tmpB += bk[i].pb;
}
res = tmpA / tmpB;
}
printf("%.4lf\n", tmpRes);
return 0;
}